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A simple approximate Riemann solver for hyperbolic systems of
conservation laws is developed for its use in Godunov schemes.
The solver is based on characteristic formulations and is illustrated
through Euler and ideal magnetohydrodynamical (MHD} equations.
The procedure of a high-order Godunov scheme incorporated with
the Riemann solver for one-dimensional hyperbolic systems of con-
servation laws is described in detail. The correctness of the scheme
is shown by comparison with the piecewise parabolic method for
Euler equations and by comparison with exact solutions of Riemann
problems for ideal MHD equations. The robustness of the scheme
is demonstrated through numerical examples involving more than
one strong shock at the same time. It is shown that the scheme offers
the principle advantages of Godunov schemes: robust operation in
the presence of strong waves, thin shock fronts, thin contact and
slip surface discontinuities. © 1995 Academic Press, Inc,

1. INTRODUCTION

It is well known that a first-order accurate scheme for a
hyperbolic system of conservation laws will give numerical
results which are very smeared in regions near discontinuities.
The reason for the smearing is the large amount of numerical
viscosity in a first-order accurate scheme. If a standard second-
order scheme is used, the numerical viscosity will be reduced,
but large oscillations will be introduced in numerical solutions
near discontinuities.

During the last 20 years, a lot of effort has been put on the
development of effective numerical schemes for hyperbolic
systems of conservation laws, The result of the effort is the
generation of modern numerical methods for conservation laws
(e.g., [1-15]). Among them, Godunov schemes have been par-
ticularly efficient for shock problems. Godunov [1] supposed
that initial data could be replaced by a set of piecewise constant
states with discontinuities and he vsed exact sclutions of Rie-
mann problems to advance the piecewise constant data. The
first major extension to the Godunov’s scheme was made by
Van Leer [5] in his MUSCL scheme which used a Riemann
solver to advance piecewise linear data, introduced a monoton-
icity constraint, and applied a smart artificial viscosity. Based
on a robust Riemann solver, the piecewise parabolic method
{PPM) [8, 11] was developed for Euler equations. The principal

advantages of these schemes are robust operation in the pres-
ence of strong waves, thin shock fronts with little attendant
noise generation, and thin contact and slip surface discontinu-
ities,

Although approximate Riemann solvers used in current nu-
merical schemes for Euler equations may be fairly simple, such
as the solver in [6, 11], but it is not true for more complicated
systemns of conservation laws. For example, Riemann solvers
for ideal MHD equations are quite complicated [16-19], and
the complexity of the Riemann solver is determined by the
hyperbolic system itself. Brio and Wu [16] applied Roe’s
method [6] to ideal MHD equations. Bell et al. [15] extended
the Engquist—Osher flux to the general systemn of conservation
laws which may lose strict hyperbolicity and exhibit iocal linear
degeneracies. Zachary and Colella [17] applied the extension
1o one-dimensional ideal MHD equations, and Zachary er al.
[18] further extended the scheme to multidimensional situa-
tions. Dai and Woodward [20] extended the PPM to multidi-
mensional ideal MHD equations on the base of an iterative
Riemann solver. There is no doubt about that Riemann solvers
for systems of conservation laws may have sophisticated uses,
and Riemann solvers are always desired. But, for the vse of a
Riemann seolver in a Godunov scheme, it is not necessary Lo
calculate the full solution of a Riemann problem. It is important
for a Godunov scheme that how only the necessary part of
Riemann solution may be obtained if a Riemann problem is not
fully solved, [n this direction, Davis [21] developed simplified
second-order Godunov methods on the base of an approximate
Riemann solution.

The purpose of this paper is to develop a simple approximate
Riemann solver for its use in high-order Godunov schemes for
hyperbolic systems of conservation laws. A high-order scheme
incorporated with the simple Riemann solver will be described
in detail in this paper. The scheme will be tested through numer-
ical examples involving strong shocks in Euler and ideal MHD
equations. The correctness of the scheme will be shown through
the comparison with the PPM and through the comparison with
exact solutions of Riemann problems. The robustness of the
scheme will be demonstrated through shock-tube problems.

The plan of this paper is as follows. In the second section,
hyperbolic systems of conservation laws and Godunov schemes
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for the hyperbolic systems will be introduced. A simple Rie-
mann solver and a high-order Godunov scheme will be intro-
duced in the third section. Numerical examples for Euler and
ideal MHD equations are provided in the fourth section. The
conclusions of this paper and a brief discussion for Godunov
schemes may be found in the last section of the paper.

2. CONSERVATION LAWS AND GODUNOV SCHEMES

Let us consider a hyperbolic system of conservation laws:

W, HY) (1)
at dx

Here U is a vector consisting of # variables U = (u,, u,, ...,
1), and F(U) is a flux vector F(U) = (£(U)}, £(U), ..., £(UN,
where the superscript T stands for transpose. We define a matrix
AU Sfag, j, k= 1, 2, .., n}) by a3 = 9f(U)/au,. The
eigenvalues of the matrix A(U) denoted by ¢; (k = 1, 2, ..., m)
are speeds of characteristic waves. We assume that an entropy
wave (if it exists) has a zero characteristic speed, and each of
the other characteristic speeds is either non-negative or non-
positive; i.e., we will work on a Lagrangian coordinate.

The system is strictly hyperbolic if all characteristic speeds ¢;
(k= 1,2, ..., n) are real and distinct. Otherwise, it is nonstrictly
hyperbolic. For example, Euler equations form a strictly hyper-
bolic system with characteristic speeds —C,, 0, and C,. Here
C, is the sound wave speed. Ideal MHD equations form a non-
strictly hyperbolic system with characteristic speeds —Cy, —C,,
-C., 0, C;, C,, and C;. Here C;, C,, and C, are fast, Alfven,
and slow wave speeds. When x-component of the magnetic
field is zero, C, and C, vanishes. When both y- and z-components
of the magnetic field vanish, either C; or C, is equal to C,.

In this paper we will develop a simple Riemann solver for
its use in high-order Godunov schemes for Eq. (1). Suppose
we have a zone x; <C x < x4, in a numerical grid. A Godunov
scheme for Eq. (1) may be viewed as the following differ-
ence equation:

(UD), = UO), + £L F, - ). @
. oy

Here At is the time step and Ax; is the width of the zone, (U(1),
is the average of U over the zone at time t, and F; is the time-
averaged flux at x;, i.e.,

)= 3 [ Ut n d, (22)
- 1 1w
F=r L. FIUG, x)] dr. (2b)

The difference equation (2) is exact and it may be obtained by
integrating Eq. (1) over the rectangular x; < x < x;;, and 0 <

t < Arin {x — r)-space. Thus the key ingredient of a Godunov
scheme is the calculation of the time-averaged flux at interfaces
of numerical zones for a given initial condition.

3. RIEMANN SOLVER AND NUMERICAL SCHEME

In this paper, the calculation for the time-averaged flux
needed in a Godunov scheme is based on the characteristic
formulanions. The characteristic formulations for a hyperbolic
system of conservation laws may be found in many standard
textbooks (e.g., [22]).

For a given system, Eq. (1), consisting of n conservation
laws, there are n characteristic waves. Suppose that ¢, is speed
of the kth characteristic wave and L (U) (={op,(U), j = 1,
2, ..., np) is its associate left eigenvector of A(U), i.e.,

L(DA) = ¢(U)L(U).

We multiply Eq. (1) by the vector LT(U) from the left and have
aU au
L{ — + —|=0
f(U) [ o {U) ax] 0

Along the characteristic curve determined by dx = ¢, (U) dt,
we have

aU au
=|=+ = | a.
dU [at (U} ax] dt

From the last two equations, we have
Li(U)dU=0

along the characteristic curve. Thus we obtain the differential
of the Riemann invariant for the kth characteristic wave:

dR, = L{(U) dU.

Since ¢, may be any one among n characteristic speeds of
the system, The differentials of # Riemann invariants may be
written as

i=n
dR, = ay(Uydy, fork=1,2,..,n (3)

i=1

Before we discuss the nonstrict hyperbolicity, we assume
that Eq. (1) forms a strictly hyperbolic system. This assumption
will be removed later. Let us consider a Riemann problem of
the system. The high-order accuracy of the scheme will be
introduced in the discussion for the numerical procedure in a
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computer code later. A Riemann problem is an initial-value
problem, Eq. (1), subject to a specific initial condition:

U, (x<0),

Ulx,t=0) = {
U, (x>=0).
Here U, and Uy are two constant states.

For a given set of initial states, U, and Uy, we calculate the
time-averaged flux through the approximation F = F(U), where
U is the solution of the following set of linear equations (k =
1,2, ..., nk

LIU—-Uy) =0 forall kwithe, <0. (4a)
LI(U—-U)=0 forall kwithc, > 0. (4b)
LIU-Uy=0 forc (U)=0. (4c)
Here
U, = (U, + Up), (5a)

Ly =} sign[D(Up))labs(L(Up) + abs(Ly(Up))] forc, <0,
(5b)

L, = # sign[D,(Up](abs(Ly(Uy)) + abs(Ly(Ug))]  for ¢, > 0.
(3¢)

Here D(U) (={d;. i, j = 1,2, ..., n}) is a diagonal matrix with
d; equal to the jth element of vector L,(U); sign(D,) is defined
as a diagonal matrix whose elements are the signs of elements
of D, and function abs(L} is defined as a vector whose elements
are absolute values of elements of the vector L. Actuaily, the
Jjth component of vector L, is obtained by summing absolute
values of the jth component of left and right vectors, L,(U,)
and L;(Uy), and by adjusting its sign to match the sign of the
Jth component of the left or right vector, depending on the
propagation direction of the characteristic wave.

Equations {4a), (4b), (4c) come from the invariance of Rie-
mann invariants along their characteristic curves. For the coef-
ficients (i.e., the elements of fk) in the set of linear Egs. (4a),
(4b), we have proposed formulations Eqgs. (5b), (5¢) instead of
normal algebraic averages. The dependence of the vector L,
on the propagation directions (i.e., the sign of ¢;) of characteris-
tic waves in Eqs. (5b), (5¢) comes from the consideration of
upwind nature, and summation of absolute values is introduced
for the robustness of the solver. The strategy is necessary for
a general system, although it is not for some of them. The
coefficients in differentials of Riemann invariants, i.e., the ele-
ments of L,, are functions of the state U. According to our
expericnce in simulations for Euler and MHD equations, the
more obvious average (U, + Ug)/2 does not work for strong
shocks uniess more sophisticated Riemann solvers are intro-
duced. For example, a coefficient in differentials of Riemann

invariants for MHD equations may be proportional to B,. Here
B, is the y-component of the magnetic field. If B,, = —B\, the
more obvious average without the function abs will make the
coefficient vanishing. Vanishing coefficients in differentials of
Riemann invariants will cause the set of linear Eqs. (4a), (4b)
singular, although each component of the magnetic field at both
left and right states does not vanish. Numerical tests for a variety
of shock-tube problems involving strong hydrodynamical and
MHD shocks shows that the average procedure, Egs. (5b}, (5¢),
works quite well, as will be seen later.

‘We mention that the consideration for the higher-order accu-
racy of the scheme may be reached through the replacement
of the left and right states, U, and Uz, in Egs. (4a), (4b) by
corresponding domain-averages, and U, in Eq. (4c) by the point
value after an interpolation. The interpolation and the domain-
averages will be introduced later. We should point out that
Eqs. (4a), (4b) are decoupled from Eq. {4c) in the Lagrangian
coordinate for many systems, such as Eunler and ideal MHD
equations.

For a system losing the strict hyperbolicity. eigenvalues ¢,(U)
(k = 1, 2, ..., n) may become degenecrate at some state U*.
Mathematically, the degeneracy may cause a singularity when
the set of linear Eqgs. (4a)—(4c) is solved. To physically remove
the degeneracy requires a more complete set of equations than
conservation laws themselves. Our principie is to use a simple
approach to remove the degeneracy under the condition that the
approximation introduced by the approach does not influence
numerical resulis. If the eigenvalues become degenerate at
U = U*, we will replace the local U by (U* + £) when we
calculate the flux through Eqs. (4a)—(4c). Here £ is a vector
with small values for its elements. The & should be sufficient
small but within the accuracy of digits of an actual machine.
The influence of the artificial £ on numerical results is negligibie
because & is very small. Actual values of £ may depend on a
specific system of conservation laws.

For a given initial value problem and a numerical grid, our
scheme starts from a set of zone-averages of conserved quanti-
ties. Cubic polynomials are used to interpolate each element
of the vector U to find the values of the element at interfaces
of numerical zones. For a uniform grid, the value of the vector
U at the left interface; i.e., x,, of the ith zone, U;;, is found to be

Uy = {U)) + 2((U); — (U)-)) — 5(AU; — AU, (6a)
Here AU; 15 the difference across the ith zone which is defined as
AU; = 35U, — (Uh-).

For a nonuniform grid, the value at the interface is

U, = Uiz +ﬁ;(<U>i = {U)-p) + fAU; + f,AU,.  (6b)
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Here AU, is the difference of the variable across the jth zone
for the nonuniform grid which is defined as

AU; = (U — (Uhizy) + gaal Uiy — <UY),

and £, fus futr 8au» and g, are geometry factors related to the
nonuniform grid, which have forms:

Zaa = Axi(2Ax,, + Ax)/{Ax— + Ax)(Ax + Ax + Ax)),
Bawr = Ax(2Ax,_, + AxM[Ax; + Axiy )(Axiy + Ax; + Ax )]
Jia = —Ax ((Axi o + Ax /[2Ax., + Ax)
X (Ax;» + Axioy + Ax + Axp)],
Fua = Ax{Ax; + Ax WICAX + Axi)
K {Axy + Axim) + Ax; + Axi ),
fo=[Axo — 2Ax fo + Axo fau))/(Axs) + Ax),

After we get the values of the vector U at interfaces, the mono-
tonicity constraint originally suggested by Van Leer [5] is ap-
plied to these values at interfaces. As we know, interpolated
structures are not always monotone increasing (decreasing)
even though they have been constructed from monotone data.
Over- and undershoots in interpolated internal zone structures
eventually give rise to over- and undershoots in zone-averaged
data. Van Leer realized that an advection scheme may be made
to preserve the monotonicity of its initial data if any non-
monotone interpolated zone structures are flattened so that they
become monotone. This leads the Van Leer’s monotonicity
constraint: no values interpolated within a zone shall lie outside
the range defined by the zone averages for this zene and its
two neighbors, 1

We assume that U(x, ) is continuous inside each zone but
may have big jumps across an interface of two neighboring
zones. After the monotonicity constraint is applied, we have
three values of U for each numerical zone: a zone-average (U),
and the values at two interfaces of the zone, U, and U, A
parabola defined by these three values is used to interpolate
the structure of U inside the zone for the calculation of domain-
averages. The parabola has the form

USP)(§) = U:,L(l —&+ U.:Rf + Ui,ﬁ(l - g)f (N

Here £ is the distance to the left interface and U, 1s defined as
U = 6(U) — 3(U. + Upp).
Different waves have different domains of dependence. For

the interface between the (i — 1)th and ith zones, i.e., x;, the
domain-average for the kth wave is defined as

1 " U{0, x) dx for either ¢, > Oor¢; < 0.

Xi ™ X *a

(Ubae =

Here x, = x; — ¢; dt for either case, For the parabolic interpola-
tion, the domain-average of U is found to be
<U)d.k =U_iz— %O'i—u‘[Ui-l,R - U.‘—},L

= Ui gl — 3052, fore, >0,
<U>d,k =U,+ %‘U'r,k[Uf.R -U,.+ Ui.é(l - %U'i,k)]

(Ba)

fore, << 0.
(8b)

Here o is the Courant number |c;| At/Ax;.

After domain-averages are obtained, Egs. (4a)—(4¢) are mod-
ified to reach a higher-order accuracy for the flux F needed in
the Godunov scheme:

LU - (U, =0 forall kwith ¢, # 0,
LIU-Uy) =0 forc, =0

Here (U),, is the domain-average corresponding to the charac-
teristic speed ¢, and it is calculated through Egq. (8a) if ¢, =
0, otherwise it is calculated through Eq. (8b). L, is defined as

L; = &sign[D,((U);..)[abs(Le({U},-1)) + abs(L{{U)))]

for ¢, = 0,
L, = $sign[Dy((U))1abs(Ly((U),,)) + abs(Ly({U):))]

forc, < 0,

Eko = %[LA-O«U)i-L) + LA-{,«U).')}-

After obtaining the flux, we update the conserved quantity U,
according to Eq. (2), by adding the flux advected into and
subtracting the flux advected out from a zone during a time step,

If a transformation on original physical equations has been
made to make the speed of the entropy wave vanish, it is
normally desired to map the conserved quantities from a La-
grangian grid to the Euler grid after the dynamical step de-
scribed above. Suppose a Lagrangian grid is denoted by x{
(i=1,2,.., N+ 1). As described before, cubic polynomials
are used to interpolate U in order to find the values at interfaces
of numerical zones. The monotonicity constraint is used to
adjust the values at the interface. A parabola is used for the
structure inside a zone for each physical variable in order to
perform the mapping.

For the mapping, we have to find the conserved quantity in
a zone (x;, x;+1) of the Eulerian grid:

U(x) dx.

Note that a zone in the Eulerian grid (x;, x;.,) may extend to
several zones in the Lagrangian grid. The contribution of a
zone in the Lagrangian grid, which is completely covered by
the domain (x;, x;3,), to the integral is simply the product of
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ﬁx

() (1
xj 8y 8 Xj+1

FIG. 1. Tustration for a integrai needed in the mapping from the Lagran-
gian to Eulerian grids. x,"' is an interface in the Lagrangian grid, (U), is a zone-
average, and U;; and Uy, are two values at ewo interfaces.

the zone-average and the width of the zone. For those zones
in the Lagrangian grid which are partially covered by the do-
main (x;, X+1), we have to find an integral

f UGx) dx.

Here (s;, 51) is a part of a zone (x\”, x}}), as shown in Fig. 1.
From the parabolic interpolation Eq. (7), the integral is found
to be

J:: Ul de = (5, — so) U + %(Uj.ﬁ + UjJe - U;,L)(éj + )

— tUi( & + &m + 7).
Here £ and 7j; are defined as

— (i i ¢
é‘ = (s — X; )/(lel — X )),

. f i
= (5 — x} ))/(xﬁil - x;(‘n)-

4. NUMERICAL EXAMPLES
In this section, we will apply the principles described in the
last section to Euler and ideal MHD equations. The set of Euler
equations is strictly hyperbolic, while the set of ideal MHD
equations is not.
4.1. Euler Equations

One-dimensional Euler equations are [24]

ap @
_ + —_— —
ar T ax P =0

d ]
_ + —_— 2 -+ =
o {pu) ir (pu® + p) =0,

(o) + a—a; [u(pE + p)] = 0.

Here pis the mass density, u the flow velocity, p the thermal
pressure, E the total specific energy defined by E = & +
1/2 1* with ¢ the specific internal energy. Thermal pressure is
related to the internal energy through the gamma-law equation
of state p = {y — 1)pe with y being the ratio of specific
heat capacities.

Euler equations may be rewritten in a Lagrangian mass coor-
dinate defined by dm = p dx:

au | F(U) _ o

ot om ©
with
Vv —u
U=z, F(Gy=| p
E pu

Here V = 1/p. The characteristic speeds, C, for an entropy
wave and C,. for two sound waves, of Egs. (9) are

Cy=0, C.==xVypp.
The differentials of their associated Riemann invariants are

dRy = d(plp"),
dR. = dp + C.. du.

We give four numerical examples for Euler equations: the
steepening of a sound wave, the propagation of a shock, the
Sod problem, and a shock-tube problem involving two shocks.
Two hundred uniform numerical zones between zero and unity
are used, and v is set to 1.4 in the Sod problem and £ in the
others. An artificial viscosity as in the PPM is used in the
second and forth examples, In Figs. 25 for the four examples,
the dashed lines are initial conditions and the dotted lines are
the results of our simulations. The dotted lines in these figures
arc hidden by the solid lines, which are the results obtained by
the PPM without the steepener for contact discontinuities.

For the steepening of a sound wave, we initially set a sound
wave through dR.:

R
d dx* = —0.5(27) cos(2mx),
@ = dRr- =

dx dc

The initial conditions for p, p, and « are obtained by solving
the set of ordinary differential equations and values (1, 1,
—1.28) for (p, p, ) at x = 0. Figure 2 shows the results at
t = 1 and 2. It may be seen that the sound wave has become
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FIG. 2. The steepening of a sound wave, 200 zones, no artificial viscosity, The dashed lines are the initial condition. Other two profiles for each variable
are the results at + = 1.0 and 2.0, at which the wave traveled about one and two wavelengths, respectively. The solid lines are cbtained from the PPM code,
and the dotted lines, which are hidden by solid lines, are the results from our scheme.

a shock in ¢+ = 1, and the scheme correctly simulated the
steepening and the propagation of the wave. Note that the dotted
lines are completely hidden by the solid lines, except in the
profiles for R,. Riemann invariants plotted in the figure are
meaningless across the shock since Riemann invariants are
defined for smooth flow. The non-constant behavior in smooth
regions for R_ and R, is the numerical error. In Fig. 3, a shock
with a Mach number 60 is used to test the correctness of the

scheme for the propagation of shocks. We inidally set {p, p,
u) = (3.99666, 449.975, 0) for x << 0.1 and (1, 0.1, —18.3661)
for x > 0.1. The results at + = 0.12 are shown in the figure.
The Sod problem has the initial condition: (p, p, 1) = (1, 1,
0) for x < 0.5 and (0.125, 0.1, 0) for x > 0.5. The results of
the problem at ¢ = (.14 are shown in Fig. 4. The correctness
of the results may be justified through the comparison with the
results in [4]. In order to test the interaction between shocks,
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FIG. 3. The propagation of a shock with a Mach number 60 with an artificial viscosity, 200 zones. The dashed lines are the initial condition, The solid
lines are obtained from the PPM code, and the dotted lines which are completely hidden by solid lines, are the results from our scheme at z = (.12,
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FIG. 5. A shock tube problem in Euler equations with an artificial viscosity, 200 zones. The dashed lines are the initial condition. The solid lines are
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FIG. 6. The steepening of a slow wave in ideal MHD equations without any artificial viscosity, 200 zones, B, = 2. The dashed lines are initial profiles,

and the wave speed ¢, at x = 0 for the initial condition is about (.4 The time interval between two consecutive profiles is 1.27, during which the wave travels
about a half wavelength. :

we set a shock-tube problem with the initial condition: (p, p, aB, 3

) = (1,1, 20) for x < 0.5 and (1, 1, —20) for x > 0.5. Our = " ar BB =0,
results for the shock-tube problem at ¢t = 0.05 are shown in

the Fig. 3. The exact solution of the corresponding Riemann 9B, a4 (B, — u,B,) =0
problem is not difficult to find, which contains two shocks with aroax T

a Mach number about 20.7 each.

4.2, Ideal Magnetohydrodynamical Equations Here pis the mass density, (u”. uy, u;) and (B, B, . B.) are thr@te
components of the flow velocity and the magnetic field. B, is
One-dimensional ideal MHD equations have the form [24]:  constant. E is the specific total energy, P, A,, and A, are the

diagonal and off-diagonal total pressure. E, P, A,, and A, are

dp 4 defined as
_+_’ =
3 ax(joux) 0,
d d 2 - _ Lo oy o 1 2 2 3
a(pux)+a(pux+P)—0, E:s+§(u,+u>.+u5)+§p(3,+By+Bz),
d d _ _ 1 : 2 5
a(pu).) + a(puxuy + A) =0, P=p~+ -S;(B). + BI — B?),
i( u)+i(uu +A)=0 AE~——1~BB
at pu, Jx P, 7. > ¥ A e Eyy
2 (oEY + 2 (pE + P + A, + wA) =0 A=~ -LBB
atp axpx '+ by T U s : = T g e
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with & the specific internal energy density and p the thermal
pressure. The gamma-law equation of state is assumed in our
simulation. As for Euler equations, the dynamical step is carried
out in a Lagrangian grid followed by a mapping operation from
the Lagrangian to Eulerian grids. Thus we rewrite ideal MHD
equations in a Lagrangian mass cocrdinate (dm = p dx):

aU  aF(U)
- + —_—
ar am 0 (10a)
with
- v A - —u, b
i, P
Uy A,
Us=s{ w |, FU)= A; . (10b)
VB, —B.u,
VB, —B.x,
| £ LJPu,r + A, + AzuZJ

Following the procedure in Section 3, it is easy to find charac-
teristic speeds of Eq. (10a), which are two fast wave speeds
Cr., two Aflven wave speeds C,-, two slow wave speeds C,.,
and a vanishing entropy wave speed:

Ch=H(C3+ C2+ C) £ V(C + C2+ C) — 4CiCA.
Here Cy, C,, and C, are defined as
Co= \/%,
C.= VB4,
C,= /(B + BE)/dm.
The differentials of their associated Riemann invariants are
dRpe = (C} — CH(dP * Crdu,) + pAJdA, = Crdu)
+ pA(dA, £ Crdu),
dR.- = (C? —~ CH(P * Cidu,) + pAfdA, * Ciduy)
+ pA(dA, + Cidu,),

dR,. = +C(B,du, — Bydu) ~ %Bx(Bdey ~ B,dB).
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The vanishing of B, of (B,, B,) may cause degenerate of MHD
waves, Mathematically, the degeneracy will cause a singularity
when Eqs. (4a)—{(4c) are solved. As discussed in Section 3
for the time-averaged flux needed in a Godunov scheme, a
component of the magnetic field is set to a small value if it is
close to zero. Since the artificial value is very small compared
with the thermal pressure but is within the accuracy of digits
of a machine, the numerical influence of the artificial value on
the system is negligible. In our simulations, the artificial value
is such chosen that the corresponding magnetic pressure is
0.001% of the local thermal pressure.

In order to show the correciness of the scheme incorporated
with the Riemann solver for ideal MHD equations, we give six
numerical examples involving discontinuities, in which  is set
to 5. The first example is for the steepening of a slow wave.
Initially a slow wave is set up through a set of Riemann in-
variants,

dR,
dx+ = —0.2(2m) cos(2mx),

with B, = 2. The initial condition for normal physical variables
is obtained through solving the set of ordinary differential equa-
tions defined by these Riemann invariants and values (1. 1,
—0.393771, 0, 0, 4, 2) for {p, p, u,, u,, u;, By, B;) at x = 0.
Two hundred numerical zones are used. Initially, the slow wave
speed at x = 0 is about 0.4, The steepening of the wave is
shown by five profiles in Fig. 6 which correspond to r = 0
(dashed lines), 1.27, 2.54, 3.81, and 5.08. Since the flow move
to the negative x-direction, the shock developed is nearly sta-
tionary, which is the worst case for the text.

The second example is to test the propagation of a fast shock.
Initially the fast shock is (p, p, u., u,, 4., By, B,) = (3.99650,
2891.26, 0, —0.01535, —0.01535, 7.99498, 7.99498) for x <<
0.2, and (1, 0.1, —46.5973, 0, 0, 2, 2) for x > 0.2 with B, =
4, as shown by dashed lines in Fig. 7. The Mach number of
the shock is about 60. Two hundred zones are used. The profiles
at t = 0.04 are shown by the dots in the figure. The structure
near x = 0.2 in the magnetic field is due to the pure discontinuity
used in the initial condition, which is referred to as the “‘starting
error’’ and may be reduced if we give the initial shock a small
internal stracture [20]. It may be seen in our numerical results
that the propagation of the shock is quite stable. The third
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TABLE I
A Solution for the Riemann Problem Shown in Fig. 10
Regions P p ux uy uz By Bz
L 1.011E + 00 9447E — 01 1.470E + 01 3.677E + 00 3.677E + 00 4.044E + 00 4.044E + 00
A 3.882E + 00 2770E + (2 2352E — 02 3.862E + 00 3,862E + (00 1.567E + 01 1.567E + 01
B 4.041E + Q0 2964E + 12 1.599E — 05 1.838E ~+ 00 L838E + (0 1.5367E + 00 1.567E + Q0
C 3.882E + 00 2.770E + 02 —2.247E — 02 —1.864E — 01 —1.864E — 01 1.567E + 01 1.567E + 01
R 1.OGOE + 00 1.000E - 01 —1.483E + 01 0.000E + 00 0.000E + 00 4.000E + 00 4.000E + 00

Note. B, =4,y =4
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TABLE I

A Solutton for the Riemann Preblem in Fig. 11

Regions o P ux uy uz By Bz
L 1.844E — 1 1.337E - 01 4.341E + 00 3.147E + 00 4.726E — 01 2.128E + 00 1.064E + 00
A 3.903E — 01 1.413E + 00 9.888E — 01 5.006E + 00 1.402E + 00 7.600E + 00 3.800E + 00
B 3.903E — 01 1.413E + 00 9.888E — 01 2.787E + 00 3.326E + 00 2.687E + 00 8.061E + 00
c 7.261E — 01 4.996E + 00 —4.768E — 07 1.762E + 00 2.501E — 01 53ME - 01 1.612E + 00
D 4.034E — 01 4.996E + 00 —4.768E — 07 1.762E + 00 2.501E — 0Ol 5.374E — 01 1.612E + 00
E 2.168E — 01 1413E + 0 —L327E + 00 3.864E — 01 —3.877E + (0 2,687E + 00 8.061E + 00
F 2.168E — 01 1413E + 00 —1.327E + Q0 —2.590E + 00 —1.295E + 00 7.600E + 00 3.800E -+ 00
R LOOOE — 1 1.000E — 01 —5961E + 00 0.000E + 00 0.000E + 00 2.000E + 00 1.000E + 00

Note. B,=5,y=4%&
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FIG. 11. A shock tube problem in ideal MHD equations with an artificial viscosity, 400 zones, B, = 5. The dashed lines are the initial profiles. and the
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solution for the constant states in different regions is shown in Table 1I which contains the solution of the corresponding Riemann problem.
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example is to test the propagation of a slow shock. As is well
known, the Mach number for a slow shock is limited by the
Alfven wave speed in its preshock state. A strong slow shock
may be set up if we give a relative large B,. We initially give
a slow shock shown by the dashed lines in Fig. 8: (p, p, u,,
u,, u, B, B) = (2.95828, 3.20260, 0, 1.09047, 1.09047, 0.2,
0.2) for x < 0.2; (1, 0.1, —1.10140, 0, 0, 4, 4) for x > 0.2
with B, = 6. The Mach number for the slow shock is about
5.6. The dots in the figure show the profiles at + = 1.0.

As we mentioned before, we use the general characteristic
formulations even for degenerate situations. The fourth example
for the propagation of a magnetosonic shock with a Mach
number 50 is to show the correctness of the approximation.
The initial condition is shown by the dashed lines in Fig. 9:
(p. p. u,, Wy, u, By, B)) = (3.99295, 5065.49, 0, 0, 0, 15.9718,
15.9718) for x < 0.2; (1, 0.1, —61.7339, 0,0, 4, 4) for x >
0.2. The results at t = 0.03 are shown by the dots in the figure.
Again the structure near x = 0 in the magnetic field is the
starting error resulting from the pure discontinuity in the ini-
tial condition.

The remaining two examples are shock-tube problems in-
volving multiple discontinuities. The first shock-tube problem
is that {p, p, u,, u,. u,. B,, B,) = (1.01071, 0.944733, 14.6972,
3.67709, 3.67709, 4.04358, 4.04358) for x < 0.5 and (1, 0.1,
14.825, 0, 0, 4, 4) for x > 0.5 with B, = 4, as shown by the
dashed lines in Fig. 10. The results at 1 = 0.08 are shown by
the dots in the figure. Two fast shocks with Mach numbers 8.9
and 10.1, and two slow shocks are generated from the initial
discontinuity. Table I gives the exact solution of the correspond-
ing Riemann problem in the different constant regions indicated
by A, B, and C, which are obtained by a Riemann solver [19]
through enough iterations. The correctness of the scheme may
be justified through the comparison between the figure and
table.

The second shock tube problem is for an initial condition
which will emanate seven discontinuities. The initial condition
is (p. p, u,, u,, u, B, B) = (0.184364, 0.133743, 4.34106,
3.14725, 4.72569, 2.128, 1.064) for x < 0.45 and (0.1, O.1,
—5.96134,0,0, 2, 1) for x > 0.45 with B, = 5, which is shown
by dashed lines in Fig. 11. In order to display the structure
between the slow shocks and the rotational discontinuities in-
volved in this problem, 400 numerical zones are used. The dots
in the figure show the results at ¢ = 0.2. The exact solution of
the corresponding Riemann problem is shown in Table II, which
contains two fast shocks with Mach numbers 1.73 and 1.73,
two slow shocks with a Mach number 1,91 each, two rotational
discontinuities with a rotated angle 45° each, and one contact
discontinuity.

5. CONCLUSIONS AND DISCUSSIONS

A simple approximate Riemann solver for its use in high-
order Godunov schemes for hyperbolic systems of conservation
laws has been developed. The solver is based on characteristic

formulations. The procedure of a high-order Gedunov scheme
incorporated with the Riemann solver is described in detail for
one-dimensional hyperbolic systems of conservation laws. The
scheme is illustrated through Euler and ideal MHD equations.
The steepening of hydrodynamical and MHD waves, the propa-
gation of hydrodynamical and MHD shocks, and shock-tube
problems are tested as numerical examples. The correctness of
the scheme incorporated with the Riemann solver has been
shown through the comparison with PPM for Euler equations
and through the comparison with exact solutions of Riemann
problems for ideal MHD equations. The robustness of the
scheme has been demonstrated through these examples which
involve multiple discontinuities. It has been shown that the
scheme incorporated with the Riemann solver offers the princi-
ple advantages of high-order Godunov schemes.

In this paper, we have not given the results for the numerical
example studied by previous investigators [16, 19, 20] for com-
pound waves in ideal MHD. We would like to mention that
the scheme in this paper gives the same result as the previous
investigations for this problem, which is actually the solution
of the dissipative MHD equations. Like most schemes for hy-
perbolic systems of conservation laws, our scheme actually
performs the simulation for dissipative equations because of
the numerical dissipation which is intrinsically present in a
numerical scheme for discontinuities. The numerical dissipation
cannot be removed through refining the mesh for discontinu-
1ties.
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